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SUMMARY 

The finite element method is used to find the elastic strain (and thus the stress) for given velocity fields of the 
Leonov model fluid. With a simple linearization technique and the Galerkin formulation, the quasi-linear 
coupled first-order hyperbolic differential equations together with a non-linear equality constraint are 
solved over the entire domain based on a weighted residual scheme. The proposed numerical scheme has 
yielded efficient and accurate convective integrations for both the planar channel and the diverging radial 
flows for the Leonov model fluid. Only the strain in the inflow plane is required to be prescribed as the 
boundary conditions. In application, it can be conveniently incorporated in an existing finite element 
algorithm to simulate the Leonov viscoelastic fluid flow with more complex geometry in which the velocity 
field is not known a priori and an iterative procedure is needed. 
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INTRODUCTION 

Numerical simulation of viscoelastic flows has been at the forefront of research in the area of 
rheology for quite some time. For a successful simulation, one needs a constitutive equation 
which can predict different viscoelastic phenomena for a range of materials, and a numerical 
scheme which is capable of handling the resulting equations. Most of the theoretical works 
devoted to the entrance flow problem'-9 have been based upon the Maxwell-type constitutive 
model in differential or integral forms. A very good review of works in this area was given by 
White et ai." They indicated that for a number of viscoelastic models, numerical calcuiations 
usually failed to converge at relatively low shear rates (with Deborah number of the order of 
unity). Yeh6 categorized the possible causes for the numerical difficulties into five classes: 
instability of the weighted residual method, poor approximation to the steep stress gradients, 
geometrical singularity, multiplicity or loss of solution, and changing the type of system of 
equations from elliptic to hyperbolic. Crochet et a!." reached almost the same conclusions in 
their book. In addition, they recognized that minor changes in the constitutive equation and/or 
the algorithm employed can lead to higher limiting values of We or S,.  Recently, the Leonov 

was used to simulate the polymeric flow with critical Deborah numbers up to looz4 
and 50.15 
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The Leonov model has been employed in many investigations'6-'8 under different flow 
situations and found to have good predictive capability and also to be quite readily amenable to 
numerical implementation. In Reference 15 the Leonov constitutive equation has been applied to 
two-dimensional flow simulation and a relaxation factor was used in the momentum equation, 
with the stresses being evaluated via a streamwise integration procedure following the general 
approach of Viryayuthakorn and Ca~well .~ The convergence of the numerical scheme has been 
tested on a 2: l  abrupt contraction flow problem by successive mesh refinement for non- 
dimensional characteristic shear rates of 5 and 50 for polyisobutylene Vistanex at 27 "C. 

The streamline integration technique requires separate algorithms for locating the streamline 
and integrating the evolution equations. As the number of dimensions in the formulation is 
increased, the complexity of evaluating the streamline position increases. To trace a particle path 
that is very close to a surface is difficult for the streamline technique. The accumulation of small 
errors in definining the streamline position may result in the particle crossing the element 
boundary at the wrong point and therefore lead to an erroneous final strain.23 Viryayuthakorn 
and Caswel14 also reported that the real limitation on the streamline integration appears to be the 
spatial interpolation of the displacement field. Especially as the Deborah number is increased, 
even larger displacements must be tracked and the assumed element displacement field becomes 
inaccurate. 

On the other hand, numerical implementation of the integration by the finite element method is 
very straightforward. This is especially true when the integration of the strain (or other 
evolutionary variables) is part of a more general finite element model such as that used for the 
velocity field calculations. Much of the coding required to implement a Galerkin formulation is 
already available from the solution of the velocity field (or temperature distribution, for 
thermomechanically coupled problems), and only the elemental stiffness matrix is totally new. 
For many other evolutionary equations, the coefficient matrix obtained from the finite element 
formulation stems from the term involving the material derivative, which depends only on the 
geometry and the velocity field. Once the matrix has been assembled and triangularized, it can be 
used to evaluate a variety of quantities of the same order, leading to very cost-effective 
 solution^.'^ From these points of view, the finite element formulation has advantages. 

Especially, it should be noted that if the number of modes for the Leonov model is increased, 
the degrees of freedom could be too large to be solved for the mixed finite element formulation. In 
this paper we present a finite element scheme for carrying out such a convective integration in a 
very straightforward and efficient manner. This technique can be conveniently incorporated as an 
inner loop to an existing cyclic iteration algorithm" for the analysis of viscoelastic flows (with a 
wide range of constitutive models). 

THE LEONOV MODEL 

According to Leonov,'* contributions to the deviatoric stress tensor T' due to the viscous and 
elastic deformations are superposed and, further, the elastic contribution is decomposed into a 
number of modes, for each of which, e.g. the lcth mode, an elastic deformation tensor CK) is 
introduced. The constitutive equation with N modes is 

where E is the rate of deformation, qo is the zero-shear-rate (Newtonian) viscosity, qK and 0, are 
respectively the shear viscosity and relaxation time of the lcth mode, and 0 < s c 1 is a rheological 
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constant. The equation satisfied by C'") is uncoupled from other modes: 

1061 

(2) 

The convective derivative 6/6t is defined as 

6 a -c = -c + v . v c  - (VV)T.C - c.vv, 
6t at 

where VV is the gradient of the velocity field and (VV)T is the transpose of VV. 
As the elastic effects tend to be zero in a steady flow, equation (2) gives14 

C ( K )  1: I +'eKE. (3) 
Hence, to reproduce the Newtonian behaviour at vanishing shear rates, equation (1) requires 

Further, for self-consistency there is a constraint on C(K), 

det C(*) = 1, 

which for two-dimensional flows is simply 
C(K) . C(K) 

1 1  22 - (CM2 = 1, 

(4) 

where C$) denotes the ijth component of C('). It turns out that all the material constants can be 
determined from standard experiments, e.g. the steady flow through a capillary rheometer or the 
dynamic response with oscillatory plates. As shown in References 16, 17 and 21, the Leonov 
model performs well in predicting the results of a host of different transient viscoelastic 
experiments on the basis of the constants chosen to fit standard characterization curves. 

GALERKIN FORMULATION 

The purpose of this paper is to present an efficient FEM scheme to integrate the Leonov 
constitutive equation (2) (which is a set of quasi-linear coupled first-order hyperbolic PDEs) 
together with a non-linear algebraic constraint (4). In this regard, focusing attention on the two- 
dimensional system, the governing equations based upon the Leonov model are of the component 
forms (assuming a known velocity field) 

where D/Dt denotes the substantive time derivative (a/& + ud/ax + va/dy). 
It should be noted that the differential equation for component C2, is omitted and the equality 

constraint is incorporated instead. The elastic strain field can be found by solving equations (6), 
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(7) and (8). Equations (6) and (7) can be linearized and simplified as below (for the steady flow 
case): 

ac11 ac,, 61 1 el2 1 + u -  - 2U,Cll + --Cl1 - 2U,C12 + -cl, = - 
ax aY 28 28 28’ U- (9) 

where ux, uy and u, denote the spatial derivatives of velocity components u and u respectively, and 
- denotes the value at the previous iteration step. The elastic strain tensor component C,, is 
represented by tz2, which is evaluated from el , and el2 via the equality constraint (8) during the 
iteration process, thus eliminating the equation for the C,, component. Because the strain tensors 
for the different modes are independent, the subscript K in equations (6), (7) and (8) is neglected for 
convenience. 

A finite element approximation for C,, and C,, can be given as 

C,,(x, Y )  2: NiClli, C~,(X, Y )  N NiClzi, (11) 

where the Ni are the basis functions associated with node i ,  and Cll i  and CIzi are the nodal values 
of the approximations to Cll(x, y) and C12(x, y) respectively. The following compact form is then 
obtained from the standard Galerkin formulation: 

where 

2e 
aN.  d N .  

u d  + u J  - 2u,Nj + 
ax aY 

2e 

and {Cll} ,  {C12) are the vectors of nodal values of C,,, and C l z i .  

SOLUTION PROCEDURES 

The nine-node quadratic rectangular element was chosen to discretize the strain field domain, 
and the finite element equations (12) were solved iteratively by use of an under-relaxation method 
with a weighting factor of 0.5 for the newly iterated values. The Newton-Raphson method was 
also tried but not successful. The criterion for convergence was based upon an error measure 4, of 
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C ,  , and C, ,  from one step to the next. The error was defined, e.g. for C ,  ,, as 

When the maximal relative errors (over all the nodes) for both C ,  , and C2, were no more than 
0.01, the solution was said to have converged. 

TEST PROBLEMS 

To illustrate the calculations of the elastic strain for the Leonov model by use of the above 
algorithm, we chose test problems of the straight planar channel flow and the expanding radial 
flow shown in Figures 1 and 2 respectively. The velocity and strain fields for both flows can be 
easily found, thus validating the present numerical scheme. 

Y 

1.354 --- -4 

Figure 1. Schematic diagram of planar flow through a straight channel 

X 

inlet 

exit 

( b )  

Figure 2. (a) Geometry of the diverging radial flow problem. The hatched area shows the domain for the FEM analysis. 
(b) Schematic diagram of the diverging flow problem which represents the hatched area of (a) 
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Plane channel flow 

A sample calculation of fully developed flow of Leonov fluid in a planar straight channel has 
been carried out for polyisobutylene (Vistanex) having the following values of parameters 
corresponding to a two-mode fit at 27°C:'4,'5 s = 0.01; q K  = 3.58 x lo4 and 2.95 x 104Pas; 
8, = 6.07 and 0.47 s. 

The finite element mesh used for the computations is shown in Figure 3(a) with 209 nodes and 
45 elements. Computations were carried out for an average velocity U = 0-05, corresponding to a 
Deborah number of 46 and 0.4 based upon the wall shear rate for the two modes respectively. 
Material entering the region is assumed to be flowing in a fully developed (Leonov fluid flow) 
state. The numerical scheme was stable, with convergence being reached within 15 iteration steps 
for a wide range of initial guesses. Velocity and strain fields can be readily solved.22 This 
analytical solution was used to compare with the FEM results. Different initial guesses were 
chosen for the elastic strain C, such as unity tensor, ten times or half of the fully developed strain, 
to investigate the stability and convergence of this numerical algorithm. Figure 4 shows a 
satisfactory agreement between the simulated and analytic solutions at the exit of the planar 
channel flow. Figure 5 shows excellent convergence of the scheme for the wide range of initial 
guesses. 

Diverging radial pow 

The second test problem is the calculation of the elastic strain for a one-dimensional radial 
flow. Material enters at the inside of an annular region and flows radially outward (Figure 2). The 
entering velocity is specified, which, because the material is incompressible and the flow is one- 
dimensional, is sufficient to define the velocity everywhere within the region. This exact velocity 

path 

Figure 3. Finite element meshes for (a) straight planar flow and (b) diverging radial Row (mesh A) 
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Figure 4. Variation of strain tensor for straight planar flow at outlet of analysed domain: (a) Cxx; (b) Cxy; (c) C,, 
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Figure 5. Convergence of C,, for straight planar channel flow (0 = 6.07 s) 

field was imposed at the nodal points of the finite element meshes for the strain integrations. 
Three finite element meshes with increasing resolution in the x-direction were used. The coarsest 
mesh (mesh A, shown in Figure 3(b)) has only 11 nodal points along a radial line, while mesh B 
(not shown) has 15 and the finest (mesh C, not shown) has 21. Material entering the region is 
assumed to be undeformed, so that C = I. This was also taken as the initial guess for the iterative 
solution process. The strain field can be calculated analytically by solving the following non- 
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X Coordinate 

Figure 6. Contour plot of C,=, component of C for diverging radial flow (0 = 6.07 s, mesh A) 

X Coordlnale 

Figure 7. Contour plot of C,, component of C for diverging radial flow (0 = 6.07 s, mesh B) 

linear initial value system (the IMSL routine DGEAR was called to solve it): 

subject to C l l ( l )  = 1, C12( l )  = 0, C,,(l) = 1. 
Here the velocity is assumed to be 
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The material properties, e.g. relaxation time OK, were taken to be the same as those for the first 
test problem. For the following definition of the Weissengberg number, 

We = Ouo/ro, 

we have We = 9.71 and 0.75 for the two modes respectively. 
It should be noted that C1,, CI2 and CZ2 in equations (13) are components of the strain tensor 

in the cylindrical co-ordinate system, and their solutions must be further transformed to the 
corresponding components in the Cartesian rectangular co-ordinate system for subsequent 
comparison. Contour plots of the C,,, C, and C,, components for the FEM and analytical 
solutions are shown in Figures 610. There are significant oscillations in the C,, component for 
the coarsest mesh. The results for the finest mesh show excellent agreement between FEM and 
analytic solutions. The simulated results are also compared with the analytic solutions in Figures 
11-13 for two streamlines. One path is near the upper boundary and the second is along the x- 

0.98 I I 

Figure 8. 

- 0.651 % 
- 0.98 1 I I I I -'----I 
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Contour plot of C,, component of C for diverging radial flow (0 = 6.07 s, mesh C or analytic solution) 

- 
0.98 1.5 2.0 2.5 3.0 3.5 4.0 L.5 5.0 

X Coordinate 

Figure 9. Contour plot of C,, component of C for diverging radial flow (6' = 6.07 s, mesh C or analytic solution) 
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Figure 10. Contour plot of C,,, component of C for diverging radial flow: solid line, analytic solution; dashed line, FEM 
for mesh C (0 = 6.07 s) 
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Figure 11. Variation of C,, along centreline for diverging radial flow (0 = 6.07 s) 

axis, as shown in Figure 3(b). As expected from the contour plots, the distribution of C,, for the 
coarsest mesh is inaccurate and shows some oscillatory behaviour. The maximal relative error 
based on the analytic solutions found in Figure 13 (curve(b)) for C,, at the top streamline is only 
1.8%. Figure 14 shows the convergence of the numerical scheme for the radial flow in the case 
where the unity strain tensor was taken as the initial guess. 

To test the robustness of our algorithm, numerical calculations were carried out with revised 
finite element meshes as shown in Figure 15, in which the mesh lines do not lie along the 
streamlines, just like in most situations of numerical flow simulation of viscoelastic fluids. Figures 
1qa) and l q b )  show good agreement between the analytic and numerical solutions with the 
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Figure 12. Variation of C,, along top streamline for diverging radial flow (@ = 6-07 s) 
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Figure 13. Variation of (a) C,, and (b) C,, along top streamline for diverging radial flow (0 = 6-07 s) 

revised meshes. In both cases the unity matrix was prescribed as the initial guess for the elastic 
strain tensor C and convergence was achieved within 30 iterations. 

CONCLUSIONS 

We have shown an efficient finite element technique which should prove useful in the analysis of 
flows of Leonov fluids. The culmination of this technique is the ability to calculate the stress field 
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Figure 14. Convergence of proposed numerical scheme for strain calculation for radial flow (unity strain tensor chosen as 
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Revised finite element meshes for (a) the straight planar flow and (b) the diverging radial flow 
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Figure 16. Comparison of the analytic and numerical solutions of C,, with revised finite element mesh being used, (a) C,, 
at the exit of the straight planar flow, (b) C,, along the centre streamline path of the diverging radial flow 

associated with a given flow field for a wide range of differential-type constitutive equations. 
Continued research is being conducted to develop methods for the numerical simulation of 
viscoelastic fluid (particularly of the Leonov model) flow with complex geometry in which the 
velocity field is not known a priori and an iterative procedure is needed. 
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